Perspectives on Program Analysis

Flemming Nielson
Computer Science Department, Aarhus University, Denmark

To guide the research efforts in the area of program analysis it is necessary to provide a taxonomy
of the various approaches (identifying strengths and weaknesses), and to explore the links to
programming languages and theoretical computer science.

In the past program analysis was mainly a tool for the compiler writer, but in the
future it shows promise of being an important ingredient in ensuring the acceptable
behaviour of software components roaming around on information networks. To
guide the research efforts it is necessary with an appraisal of the current technology
and to investigate its links to programming languages and theoretical computer
science.

Taxonomy

The flow based approach [4; 8] to program analysis includes the traditional data
flow analysis techniques as well as the more recent control flow analysis techniques.
In this approach the focus is on discovering intensional properties like use-definition
chaining (associating uses of variables with the corresponding assignments or “def-
initions”) and closure analysis (associating function applications with the corre-
sponding labels of the functions applied). This allows to discover aspects of the
extensional properties: constant propagation (determining that a variable is always
a constant at a given use), and neededness analysis (whether or not a function ac-
tually uses its argument). On the positive side, this approach often gives rise to
a rather efficient implementation; often it is performed by generating constraints
that can then be solved efficiently, without being influenced by the syntax of the
program being analysed. On the negative side, the semantic correctness of the
analysis is seldom established and therefore there is often no formal justification
for the program transformations for which the information is used.

The semantics based approach [1; 5] is often based on domain theory in the form
of abstract domains modelling sets of values, projections, or partial equivalence
relations. The approach tends to focus more directly on discovering the extensional
properties of interest: for constant propagation it might operate on sets of values
with constancy corresponding to singletons, and for neededness analysis it might
perform a strictness analysis and use the strictness information for neededness (or
make use of the “absence” notion from projection analysis and attempt to discover
the difference). On the positive side, this usually gives rise to provably correct anal-
yses, although there are sometimes complications (due to deciding what information
to stick onto the program points) when formally justifying the program transfor-
mations. On the negative side, the implementations are often computationally too
costly to be of general use.

www.manaraa.com



2 : Flemming Nielson

The inference based approach [6; 7] includes general logical techniques as well as
annotated type and effect systems built on top of Hindley-Milner type inference. In
spirit the approach is close to that of the semantics based one except that logical
formulae are used to denote the semantic entities. Consequently it shares many
of the positive and negative aspects of the semantics based approach. A potential
advantage over the semantics based approach is that the shape of inference trees
seems promising for sticking information onto program points and thereby facilitates
formally justifying the program transformations.

The abstract interpretation based approach [2; 3] is in a sense an intermediary
between the flow based and semantics based approaches. It operates equally well on
property spaces modelling intensional information as on property spaces modelling
extensional information. On the positive side, it allows to give a systematic account
of the design of flow based and semantics based program analyses by “calculating”
the analyses rather than merely specifying them; additionally it offers general tech-
niques like “widening operators” for the approximation of fixed points. On the
negative side, the available technology is not very programming language depen-
dent: good examples of widening operators are hard to find in the literature, and
the approach is often based on a rather low-level notion of operational semantics.

Programming Languages

Program analysis has a number of applications but none as dominating as improv-
ing the quality of the code generated by compilers. It is important to consider
whether or not the results of the analysis, and any imprecisions in the information
obtained, is of relevance to the programmer or not. If it is only of relevance to
the compiler internals there is no harm in having the analysis operate on the in-
termediate language of the compiler. If the information is also of relevance to the
programmer, then the use of an intermediate language may make it impossible to
present the information to the programmer. Consequently he may be unable to
understand why the program cannot be implemented efficiently and how to modify
the program. Similarly, there may be small tricks (like don’t curry functions need-
lessly) that will help a certain analysis technology to produce more precise results
or to do so less costly.

Another use of program analysis technology is to influence the design of pro-
gramming languages with a view to producing languages that may be analysed
efficiently and precisely. This is related to the impact semantics has had on pro-
gramming language design: it is partly descriptive, explaining what a construct
really does, and partly prescriptive, advising against constructs with intricate se-
mantics. The current interest in safe systems on the information network, motivates
producing software that can positively and automatically be shown to be free of
unwanted behaviour; examples include guaranteeing that data will not be modified
unless properly authorised, and that certain protocols of communication are always
obeyed.

To increase its impact on programming languages it would be advantageous to
develop general tools for program analysis (like lex and yacc for parsing) that
could then be integrated into applications.

www.manaraa.com



Perspectives on Program Analysis . 3

Theoretical Computer Science

One branch of Theoretical Computer Science is devoted to the semantics of com-
putation. The semantics of program analysis is certainly an interesting field for
applying ideas from domain theory (including denotational semantics) as well as
logical systems inspired by linear logic, domain logics, and modal logic. However,
it is not always clear that the demands posed by program analysis are simple varia-
tions of the demands posed by the semantics of programing languages; an example
being the frequent identification of the computation ordering (as in domain the-
ory) with the approximation ordering (as in the subset ordering). Perhaps there is
a need for the demands of program analysis to more fundamentally influence the
thinking of semantics, rather than to see program analysis as merely an interesting
field for applications.

Another branch of Theoretical Computer Science is devoted to the study of al-
gorithms and their complexities. Program analysis is largely a consumer of results
and techniques in this area: to ensure that the program analyses may be efficiently
implemented, and to warn against needlessly improving the precision of analyses
that are already too costly (say worse than exponential); the latter seems the rule
rather than the exception for a number of semantics based analyses. At the same
time there are a number of places in program analysis where notions from complex-
ity may facilitate the development of a richer theory; one example being a notion
of complexity for widening operators.

To increase its link with theoretical computer science it would be helpful to
identify the open problems and the areas most in demand for further research.

REFERENCES

[1] G. L. Burn, C. Hankin, and S. Abramsky. Strictness Analysis for Higher-Order Functions.
Science of Computer Programming, 7:249-278, 1986.

[2] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Proc. 4th POPL, pages
238-252. ACM Press, 1977.

[3] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proc. 6th
POPL, pages 269-282. ACM Press, 1979.

[4] S. Jagannathan and S. Weeks. A unified treatment of flow analysis in higher-order languages.
In Proc. POPL ’95, pages 393-407. ACM Press, 1995.

[5] N. D. Jones and F. Nielson. Abstract Interpretation: a Semantics-Based Tool for Program
Analysis. In Handbook of Logic in Computer Science vol. 4. Oxford University Press, 1995.

[6] P. Jouvelot and D. K. Gifford. Algebraic reconstruction of types and effects. In Proc. POPL
’90, pages 303-310. ACM Press, 1990.

[7] H. R. Nielson and F. Nielson. Higher-Order Concurrent Programs with Finite Communication
Topology. In Proc. POPL ’9/, pages 84-97. ACM Press, 1994.

[8] F. Nielson and H.R. Nielson. Infinitary Control Flow Analysis: A Collecting Semantics for
Closure Analysis. To appear in Proc. POPL ’97. ACM Press, 1997.

www.manaraa.com



